PROBLEM

The number of values of x where the function

 $f(x) = \cos x + \cos(\sqrt{2}x)$ attains its maximum is

(1998 - 2 Marks)

(a) 0

(b) 1

(c) 2

(d) infinite

SOLUTION

o

To show

$$1 + x \ln(x + \sqrt{x^2 + 1}) \ge \sqrt{1 + x^2}$$
 for $x \ge 0$

Consider
$$f(x) = 1 + x \ln(x + \sqrt{x^2 + 1}) - \sqrt{1 + x^2}$$

Here,
$$f'(x) = \ln(x + \sqrt{x^2 + 1}) + \frac{x}{x + \sqrt{x^2 + 1}}$$

$$\left[1 + \frac{x}{\sqrt{x^2 + 1}}\right] - \frac{x}{\sqrt{1 + x^2}}$$

$$= \ln\left(x + \sqrt{x^2 + 1}\right)$$

As
$$x + \sqrt{x^2 + 1} \ge 1$$
 for $x \ge 1$

$$\therefore \ln(x + \sqrt{x^2 + 1}) \ge 0$$

$$\therefore f'(x) \ge 0, \forall x \ge 0$$

Hence f(x) is increasing function.

Now for $x \ge 0 \Rightarrow f(x) \ge f(0)$

$$\Rightarrow$$
 1+xln(x+ $\sqrt{x^2+1}$)- $\sqrt{1+x^2} \ge 0$

$$\Rightarrow 1 + x \ln(x + \sqrt{x^2 + 1}) \ge \sqrt{1 + x^2}$$